Abstract

The first use of CO2 laser photoacoustic measurements for detecting the methanol contents in alcohol-like solutions is presented. With an intracavity cell configuration, the minimum detectable concentration was ∼200 ppm for methanol and the linear range of the calibration curve for methanol was from 200 to 70000 ppm. For demonstrating the reliability of analysis in alcoholic beverages, a series of different concentrations of two-component samples was prepared and measured by the same procedures. The results showed the feasibility on determining methanol and ethanol contents accurately within a specific tolerance, limited mainly by background signal and laser stability. This potential method with no pre-treatment of samples takes only ∼10 min to finish one single measurement. It suggests that the PA detection is suitable for routine diagnosis of adulterated wines in commercial products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call