Abstract

Processed meats are classified by the International Agency for Research on Cancer as category 1 because their consumption increase the incidence of colorectal and stomach cancers. Meat processing widely employs nitrite and sorbate as preservatives. When these preservatives are concomitantly used in non-compliant processes, they may react and produce the mutagen 2-methyl-1,4-dinitro-pyrrole (DNMP). This study aimed to evaluate the ability of different bacteria isolated from food matrices to biodegrade DNMP in in vitro reactions and in a processed meat model. A possible mechanism of biodegradation was also tested. In vitro experiments were performed in two steps. In the first one, only one strain out of 13 different species did not interact with DNMP. In the following step, an empirical conversion factor was calculated to assess the conversion of DNMP to 4-amino-2-methyl-1-nitro-pyrrole by the strains. The most efficient strains were Staphylococcus xylosus LYOCARNI SXH-01, Lactobacillus fermentum LB-UFSC 0017, and Lactobacillus casei LB-UFSC 0019, which yielded conversion factors of 0.62, 0.60, and 0.43, respectively. Thus, such strains were individually added to the processed meat model and completely degraded the DNMP. Moreover, S. xylosus degraded DNMP in less than 30 min. The enzymatic mechanism was evaluated using its cell-free extract. It showed that, in the aerobic system, reduction rates were 30.321 and 22.411 nmol/mg of protein/min using NADH and NADPH, respectively. A DNMP reductase was assigned to the extract and a potential presence of an oxygen insensitive nitroreductase type I B was considered. Thus, biotechnological processes may be an efficient strategy to eliminate the DNMP from meat products and to increase food safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.