Abstract
Microplastics are an emerging class of recalcitrant organic pollutants that are of general scientific and public interest nowadays. It would be ideal to remove microplastics from the environment through biodegradation, as biodegradation is a highly ecological and economically acceptable approach. Unfortunately, the efficiency of biodegradation of conventional plastic polymers is low. The application of a suitable pretreatment could increase the efficiency of biodegradation. In this study, the applicability of UV-C/H2O2 and UV-C/S2O82− advanced oxidation processes as pretreatments for the biodegradation of polystyrene and poly(vinyl chloride) microplastics by the yeast Candida parapsilosis was investigated. For the investigated range (pH 4–10, peroxide concentration up to 20 mM and treatment duration up to 90 min), the UV-C/H2O2 process proved to be more effective in degrading polystyrene microplastics, while the UV-C/S2O82− process was more efficient at degrading poly(vinyl chloride) microplastics. Samples pretreated under optimal conditions (90 min treatment time at a pH of 5.7 and H2O2 concentration of 20.0 mM for polystyrene samples; 90 min treatment time at a pH of 8.6 and S2O82− concentration of 11.1 mM for poly(vinyl chloride) samples) were subjected to biodegradation by Candida parapsilosis. The biodegradation conditions included an agitation speed of 156 rpm and an initial pH of 5.7 for the experiments with the polystyrene samples, while an agitation speed of 136 rpm and an initial pH of 4.9 were used for the poly(vinyl chloride) experiments. The initial value of the optical density of the yeast suspension was 1.0 in both cases. The experiments showed a positive effect of the pretreatment on the number of yeast cells on the surface of the microplastics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.