Abstract

The current COVID-19 pandemic has necessitated the need to find healthcare solutions that boost or support immunity. There is some evidence that high-velocity, low-amplitude (HVLA) controlled vertebral thrusts have the potential to modulate immune mediators. However, the mechanisms of the link between HVLA controlled vertebral thrusts and neuroimmune function and the associated potential clinical implications are less clear. This review aims to elucidate the underlying mechanisms that can explain the HVLA controlled vertebral thrust--neuroimmune link and discuss what this link implies for clinical practice and future research needs. A search for relevant articles published up until April 2021 was undertaken. Twenty-three published papers were found that explored the impact of HVLA controlled vertebral thrusts on neuroimmune markers, of which eighteen found a significant effect. These basic science studies show that HVLA controlled vertebral thrust influence the levels of immune mediators in the body, including neuropeptides, inflammatory markers, and endocrine markers. This narravtive review discusses the most likely mechanisms for how HVLA controlled vertebral thrusts could impact these immune markers. The mechanisms are most likely due to the known changes in proprioceptive processing that occur within the central nervous system (CNS), in particular within the prefrontal cortex, following HVLA spinal thrusts. The prefrontal cortex is involved in the regulation of the autonomic nervous system, the hypothalamic–pituitary–adrenal axis and the immune system. Bi-directional neuro-immune interactions are affected by emotional or pain-related stress. Stress-induced sympathetic nervous system activity also alters vertebral motor control. Therefore, there are biologically plausible direct and indirect mechanisms that link HVLA controlled vertebral thrusts to the immune system, suggesting HVLA controlled vertebral thrusts have the potential to modulate immune function. However, it is not yet known whether HVLA controlled vertebral thrusts have a clinically relevant impact on immunity. Further research is needed to explore the clinical impact of HVLA controlled vertebral thrusts on immune function.

Highlights

  • The COVID-19 pandemic has resulted in significant global morbidity and mortality [1,2], especially amongst individuals who are immunocompromised, such as older people and those with underlying medical conditions [2,3]

  • Research investigating the effect of HVLA controlled vertebral thrusts on neuroimmune function and its potential mechanisms were extracted from the articles retrieved from the literature search

  • The prefrontal cortex is critically involved in regulating the autonomic nervous system, the endocrine system and the immune system [94,144,145,146,147,148,149,150,151,152,153,154]

Read more

Summary

Introduction

The COVID-19 pandemic has resulted in significant global morbidity and mortality [1,2], especially amongst individuals who are immunocompromised, such as older people and those with underlying medical conditions [2,3]. Healthcare providers have increasingly embraced a biopsychosocial model of healthcare that has incorporated approaches such as these to healthcare promotion [13,14] One such healthcare modality that has been shown to influence neuroimmune chemical concentrations over the past two decades is manual or mechanically assisted application of specific high-velocity, low amplitude (HVLA), controlled vertebral thrusts ( known as chiropractic adjustments or spinal manipulation) [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]. The sensory (proprioceptive) information from deep paraspinal muscles around a dysfunctional vertebral motion segment, which for the purposes of this review will be referred to as a central segmental motor control (CSMC) problem ( known as a vertebral subluxation or joint dysfunction), is thought to be the driving factor in the widespread maladaptive neuroplastic changes within the CNS responsible for altered/poor vertebral column motor control and/or the development of chronic spinal pain syndromes

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.