Abstract
Focused ion beam (FIB) based serial sectioning was utilized to characterize the morphology of two high angle grain boundaries (HAGB) in a nickel based superalloy, one that experienced grain boundary sliding (GBS) and the other experienced strain accumulation, during elevated temperature constant stress loading conditions. A custom script was utilized to serial section and collect ion-induced secondary electron images from the FIB-SEM system. The MATLAB based MIPARTM software was utilized to align, segment and reconstruct 3D volumes from the sectioned images. Analysis of the 3D data indicates that the HAGB that exhibited GBS had microscale curvature that was planar in nature, and local serrations on the order of ±150nm. In contrast, the HAGB that exhibited strain accumulation was not planar and had local serrations an order of magnitude greater than the other grain boundary. It is hypothesized that the serrations and the local grain boundary network are key factors in determining which grain boundaries experience GBS during creep deformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.