Abstract

BackgroundSoil organic carbon (SOC) represents a significant pool of carbon within the biosphere. Climatic shifts in temperature and precipitation have a major influence on the decomposition and amount of SOC stored within an ecosystem and that released into the atmosphere. We have linked net primary production (NPP) algorithms, which include the impact of enhanced atmospheric CO2 on plant growth, to the SOCRATES terrestrial carbon model to estimate changes in SOC for the Australia continent between the years 1990 and 2100 in response to climate changes generated by the CSIRO Mark 2 Global Circulation Model (GCM).ResultsWe estimate organic carbon storage in the topsoil (0–10 cm) of the Australian continent in 1990 to be 8.1 Gt. This equates to 19 and 34 Gt in the top 30 and 100 cm of soil, respectively. By the year 2100, under a low emissions scenario, topsoil organic carbon stores of the continent will have increased by 0.6% (49 Mt C). Under a high emissions scenario, the Australian continent becomes a source of CO2 with a net reduction of 6.4% (518 Mt) in topsoil carbon, when compared to no climate change. This is partially offset by the predicted increase in NPP of 20.3%ConclusionClimate change impacts must be studied holistically, requiring integration of climate, plant, ecosystem and soil sciences. The SOCRATES terrestrial carbon cycling model provides realistic estimates of changes in SOC storage in response to climate change over the next century, and confirms the need for greater consideration of soils in assessing the full impact of climate change and the development of quantifiable mitigation strategies.

Highlights

  • Soil organic carbon (SOC) represents a significant pool of carbon within the biosphere

  • Climate change effects on the terrestrial carbon cycle are principally driven by the response of vegetation to these changes

  • We have attempted to predict the impact of these environmental variables on the cycling of SOC in terrestrial ecosystems of Australia through the 21st century in response to climate change

Read more

Summary

Introduction

Soil organic carbon (SOC) represents a significant pool of carbon within the biosphere. Climatic shifts in temperature and precipitation have a major influence on the decomposition and amount of SOC stored within an ecosystem and that released into the atmosphere. Soil organic carbon (SOC) is essential for maintaining fertility, water retention, and plant production in terrestrial ecosystems [2]. The amount of SOC stored within an ecosystem, is dependent on the quantity and quality of organic matter returned to the soil matrix, the soils ability to retain organic carbon (a function of texture and cation exchange capacity), and biotic influences of both temperature and precipitation [3]. The strong link between phosphorus availability and plant production [8] means nutrient deficiencies are compounded by a subsequent reduction in plant production, meaning less organic material returning to the soil matrix through decomposition

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call