Abstract

Modern-day approaches to reducing the emissions of combustion engines lead to unconventional strategies which include downspeeding, downsizing, cylinder deactivation. A common characteristic of these strategies is a shift in torque excitation components of the combustion engine. This excitation shift results in an increase in vibrations of the drivetrain and the risks associated with it. The presented article aims to investigate the elementary characteristics of the pure cubic nonlinear system and to identify the potential for its use in mechanical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.