Abstract
Rifaximin-α is a gut-targeted antibiotic indicated for numerous gastrointestinal and liver diseases. Its multifaceted mechanism of action goes beyond direct antimicrobial effects, including alterations in bacterial virulence, cytoprotective effects on host epithelial cells, improvement of impaired intestinal permeability, and reduction of proinflammatory cytokine expression via activation of the pregnane X receptor. Rifaximin-α is virtually non-absorbed, with low systemic drug levels contributing to its excellent safety profile. While there are high concentrations of drug in the colon, low water solubility leads to low colonic drug bioavailability, protecting the gut microbiome. Rifaximin-α appears to be more active in the bile-rich small bowel. Its important biologic effects are largely at sub-inhibitory concentration. Although in vitro testing of clinical isolates from rifaximin recipients has revealed rifaximin-resistant strains in some studies, the risk of emergent rifaximin-α resistance appears to be lower than for many other antibiotics. Rifaximin-α has been used for many years for traveler's diarrhea with no apparent increase in resistance levels in causative pathogens. Further, rifaximin-α retains its efficacy after long-term and recurrent usage in chronic gastrointestinal disorders. There are numerous reasons why the risk of microbial resistance to rifaximin-α may be lower than that for other agents, including low intestinal bioavailability in the aqueous colon, the mechanisms of action of rifaximin-α not requiring inhibitory concentrations of drug, and the low risk of cross transmission of rifaximin-α resistance between bacterial species. Reported emergence of vancomycin-resistant Enterococcus in liver-disease patients maintained on rifaximin needs to be actively studied. Further studies are required to assess the possible correlation between in vitro resistance and rifaximin-α efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.