Abstract

Cover crops are plants seeded before or after cash crops to improve soil health, reduce weed pressure, and prevent erosion. Cover crops also produce various antimicrobial secondary metabolites (i.e., glucosinolates, quercetin), yet the role of cover crops in moderating the population of human pathogens in the soil has rarely been investigated. This study aims to determine the antimicrobial capacity of three cover crop species to reduce the population of generic Escherichia coli (E. coli) in contaminated agricultural soil. Four-week-old mustard greens (Brassicajuncea), sunn hemp (Crotalaria juncea), and buckwheat (Fagopyrum esculentum) were mixed into autoclaved soil and inoculated with rifampicin-resistant generic E. coli to achieve a starting concentration of 5 log CFU/g. The surviving microbial populations on days 0, 4, 10, 15, 20, 30, and 40 were enumerated. All three cover crops significantly reduced the population of generic E. coli compared to the control (p < 0.0001), particularly between days 10 and to 30. Buckwheat resulted in the highest reduction (3.92 log CFU/g). An inhibitory effect (p < 0.0001) on microbial growth was also observed in soils containing mustard greens and sunn hemp. This study provides evidence for the bacteriostatic and bactericidal effect of particular cover crops. More research regarding the secondary metabolites produced by certain cover crops and their potential as a bio mitigation strategy to improve on-farm produce safety is warranted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call