Abstract

Industry transitions away from traditional photosystem II inhibiting (PSII) herbicides towards an ‘alternative’ herbicide suite are now widely advocated as a key component of improved environmental outcomes for Australia's Great Barrier Reef and improved environmental stewardship on the part of the Queensland sugar industry. A systematic desktop risk analysis found that based on current farming practices, traditional PSII herbicides can pose significant environmental risks. Several of the ‘alternatives’ that can directly fill a specific pre-emergent (‘soil residual’) weed control function similar to regulated PSII herbicides also, however, presented a similar environmental risk profile, regardless of farming systems and bio-climatic zones being considered. Several alternatives with a pre-emergent residual function as well as alternative post-emergent (contact or ‘knockdown’) herbicides were, predicted to pose lower environmental risks than the regulated PSII herbicides to most trophic levels, although environmental risks could still be present. While several herbicides may well be viable alternatives in terms of weed control, they can still present equal or possibly higher risks to the environment. Imposing additional regulations (or even de-registrations) on particular herbicides could result in marginal, and possibly perverse environmental impacts in the long term, if usage shifts to alternative herbicides with similar risk profiles. Regardless of any regulatory efforts, improved environmental sustainability outcomes in pesticide practices within the Great Barrier Reef catchment area will hinge primarily on the continuing adoption of integrated, strategic pest management systems and technologies applied to both traditional and ‘alternative’ herbicides. One of the emerging policy challenges is ensuring the requisite technical and extension support for cane growers to ensure effective adoption of rapidly evolving farming system technologies, in a very dynamic and scrutinised herbicide management environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.