Abstract

2,4-dinitrophenol (DNP), an uncoupling mitochondrial agent, has been identified as a source of oxidative stress and linked to the pathogenesis of ovarian cancer. In this study, we determine the cytotoxic effect of DNP alone or in combination with chemotherapies in ovarian cancer cells. We utilized human ovarian cancer cell lines SKOV-3 and MDAH-2774 with their chemoresistant counterparts. Cancer stem cells (CSCs) were isolated from SKOV-3 utilizing magnetic-activated cell sorting technique for CD44+/CD117+ cells. Human normal primary ovarian epithelial (NOEC) and HOSEpiC cell lines were used as a control. Cells were treated with and without chemotherapy (Taxotere 0.3μM or cisplatin 50 μM), with or without increasing doses of DNP (0.125, 0.25, or 0.5 mM) for 24 hours followed by evaluation of cell viability and IC50 utilizing MTT assay. For determination of synergism, Facombination index plots were created using the CompuSyn software. All data were run in triplicates and analyzed by t-test. DNP treatment of ovarian cancer and chemoresistant ovarian cancer cell lines as well as CSCs resulted in decreased cell viability in a dose dependent manner with no effect on normal cells. Combination of DNP with chemotherapy synergistically enhances cytotoxicity of chemotherapeutics in all ovarian cancer cells as compared to chemotherapy alone. Our data indicates the potential of the addition of DNP to the arsenal of drugs available to treat ovarian cancer, whether alone or in combination with chemotherapies. The synergistic effects of DNP in reducing the required amount of chemotherapy, is critical for the alleviation of harmful side effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call