Abstract

Scientists encounter many obstacles in traditional cancer therapies, including the side effects on the healthy cells, drug resistance, tumor relapse, the short half-life of employed drugs in the blood circulation, and the improper delivery of drugs toward the tumor site. The unique traits of stem cells (SCs) such as self-renewal, differentiation, tumor tropism, the release of bioactive molecules, and immunosuppression have opened a new window for utilizing SCs as a novel tool in cancer treatment. In this regard, engineered SCs can secrete anti-cancer proteins or express enzymes used in suicide gene therapy which locally induce apoptosis in neoplastic cells via the bystander effect. These cells also stand as proper candidates to serve as careers for drug-loaded nanoparticles or to play suitable hosts for oncolytic viruses. Moreover, they harbor great potential to be employed in immunotherapy and combination therapy. However, tactful strategies should be devised to allow easier transplantation and protection of SCs from in vivo immune responses. In spite of the great hope concerning SCs application in cancer therapy, there are shortcomings and challenges to be addressed. This review tends to elaborate on recent advances on the various applications of SCs in cancer therapy and existing challenges in this regard.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call