Abstract

Simple SummaryModern, personalized therapy approaches are increasingly changing advanced cancer into a chronic disease. Compared to imaging, novel omics methodologies in molecular biology have already achieved an individual characterization of cancerous lesions. With quantitative imaging biomarkers, analyzed by radiomics or deep learning, an imaging-based assessment of tumoral biology can be brought into clinical practice. Combining these with other non-invasive methods, e.g., liquid profiling, could allow for more individual decision making regarding therapies and applications.Similar to the transformation towards personalized oncology treatment, emerging techniques for evaluating oncologic imaging are fostering a transition from traditional response assessment towards more comprehensive cancer characterization via imaging. This development can be seen as key to the achievement of truly personalized and optimized cancer diagnosis and treatment. This review gives a methodological introduction for clinicians interested in the potential of quantitative imaging biomarkers, treating of radiomics models, texture visualization, convolutional neural networks and automated segmentation, in particular. Based on an introduction to these methods, clinical evidence for the corresponding imaging biomarkers—(i) dignity and etiology assessment; (ii) tumoral heterogeneity; (iii) aggressiveness and response; and (iv) targeting for biopsy and therapy—is summarized. Further requirements for the clinical implementation of these imaging biomarkers and the synergistic potential of personalized molecular cancer diagnostics and liquid profiling are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call