Abstract

The post-translational processing and intracellular sorting of the proinsulin-converting enzyme carboxypeptidase H (CPH) was studied in isolated rat islets of Langerhans. Pulse-chase-radiolabelling experiments using sequence-specific antisera showed that CPH was synthesized initially as a 57-kDa glycoprotein which was processed to a 54-kDa mature form by proteolytic processing at the N-terminus. Processing of the CPH precursor occurred rapidly ( t 1 2 = 30 min ) after an initial delay of 15–30 min and the enzyme was secreted in parallel with the insulin-related peptides in response to glucose-stimulation within 1 h after radiolabelling. This indicated that the proteins were packaged into nascent secretory granules at approximately the same rate following synthesis. Conversion of proinsulin and the 57-kDa form of CPH was inhibited markedly by chase incubation of islets at 20°C, indicating that maturation of both proteins occurs in a post-Golgi compartment. Affinity purification of the enzyme from insulinoma subcellular fractions showed that the 57-kDa form was associated with endoplasmic reticulum or Golgi elements, and the 54-kDa form was present in secretory granules. Structural analysis showed that the granule form of the enzyme had an N-terminal amino acid sequence beginning at residue 42 of rat CPH, thereby implicating cleavage of the precursor after the fourth Arg in a site containing five consecutive Arg residues. These findings indicate that post-translational processing of CPH is mediated by an endoprotease which cleaves at sites containing multiple basic amino acid residues upon segregation of the enzyme to the secretory granules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.