Abstract

The relevance of adult neurogenesis in hippocampal function is well documented, as is the potential impact stress has on the adult neurogenic niche. Adult born neurons are generated from neural precursors in the dentate gyrus (DG), although the point in postnatal development that these cell precursors originate is not known. This is particularly relevant if we consider the effects stress may have on the development of neural precursors, and whether such effects on adult neurogenesis and behavior may persist in the long-term. We have analyzed the proportion of neural precursors in the adult murine hippocampus born on specific days during postnatal development using a dual birth-dating analysis, and we assessed their sensitivity to dexamethasone (DEX) on the peak day of cell generation. We also studied the consequences of postnatal DEX administration on adult hippocampal-dependent behavior. Postnatal day 6 (P6) is a preferred period for proliferating neural stem cells (NSCs) to become the precursors that remain in a proliferative state throughout adulthood. This window is independent of gender, the cell's location in the DG granule cell layer or their rostro-caudal position. DEX administration at P6 reduces the size of the adult NSC pool in the DG, which is correlated with poor learning/memory capacity and increased anxiety-like behavior. These results indicate that aNSCs are generated non-uniformly during postnatal development, with peak generation on day P6, and that stress receptor activation during the key period of postnatal NSC generation has a profound impact on both adult hippocampal neurogenesis and behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.