Abstract

A combined strategy via mixing Mg(BH4)2·6NH3 with ammonia borane (AB) is employed to improve the dehydrogenation properties of Mg(BH4)2·6NH3. The combined system shows a mutual dehydrogenation improvement in terms of dehydrogenation temperature and hydrogen purity compared to the individual components. A further improved hydrogen liberation from the Mg(BH4)2·6NH3–6AB is achieved with the assistance of ZnCl2, which plays a crucial role in stabilizing the NH3 groups and promoting the recombination of NHδ+⋯HBδ−. Specifically, the Mg(BH4)2·6NH3–6AB/ZnCl2 (with a mole ratio of 1:0.5) composite is shown to release over 7 wt.% high-pure hydrogen (>99 mol%) at 95 °C within 10 min, thereby making the combined system a promising candidate for solid hydrogen storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.