Abstract
We studied the changes in inferior cardiac sympathetic nerve discharge (SND) and mean arterial pressure (MAP) produced by aspiration or chemical inactivation (muscimol microinjection) of lobule IX (uvula) of the posterior vermis of the cerebellum in baroreceptor-denervated and baroreceptor-innervated cats anesthetized with urethane. Autospectral analysis was used to decompose SND into its frequency components. Special attention was paid to the question of whether the experimental procedures affected the rhythmic (10-Hz and cardiac-related) components of SND. Aspiration or chemical inactivation of lobule IX produced an approximately three-fold increase in the 10-Hz rhythmic component of SND (P < or = 0.05) in baroreceptor-denervated cats. Total power (0- to 20-Hz band) was unchanged. Despite the absence of a change in total power in SND, there was a statistically significant increase in MAP. In baroreceptor-innervated cats, neither aspiration nor chemical inactivation of the uvula caused a significant change in cardiac-related or total power in SND or MAP. These results are the first to demonstrate a role of cerebellar cortical neurons of the posterior vermis in regulating the frequency composition of naturally occurring SND. Specifically, these neurons selectively inhibit the 10-Hz rhythm-generating network in baroreceptor-denervated, urethane-anesthetized cats. The functional implications of these findings are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.