Abstract

The stacking interactions of two guanine molecules were analyzed detail at the DF-MP2/aug-cc-pVDZ level of theory for conformations appearing B-DNA. The dependence of intermolecular interaction energies on the pairs of step parameters (shift, slide, rise, tilt, roll and twist) was determined. The values of these parameters were chosen to cover the whole range of variability appearing crystallographic data. The scanning procedure was performed by subsequent changes of two variables with fixed values of the remaining base-pair and base-step BDNA parameters. Additionally, the hybrid variational-perturbational scheme was applied for the decomposition of the interaction energy into physically meaningful contributions at the MP2 level of theory. The significant impact of the mutual orientations of guanine bases was observed not only on the total intermolecular energy but also on its components. The second-order dispersion interaction is the most significant contribution to stabilization energy and is about eight times larger compared to the first-order electrostatic term with relaxation effects, which is also of stabilizing character. The dispersion interactions may vary up to 9.6 kcal mol(-1) between different guanine-guanine conformations. The parameters defining the mutual orientation of stacked guanine molecules have a different impact on the stabilization of the investigated complex. The following base-step parameters have only a minor impact on the stabilization energies: shift-slide, shift-roll, shift-twist, slide-twist and roll-twist. On the other hand, parameters such as rise and tilt significantly influence intermolecular interactions, i.e. strong attraction occurs only for a limited range of their values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.