Abstract

1. In the presence of atropine (1 microM), guanethidine (3 microM), indomethacin (3 microM), nifedipine (1 microM), L-nitroarginine (L-NOARG, 100 microM), and the selective tachykinin NK1 and NK2 receptor antagonists, SR 140,333 and GR 94,800, respectively (0.1 microM each), a single pulse of electrical field stimulation (EFS) produced a monophasic non-adrenergic non-cholinergic (NANC) inhibitory junction potential (i.j.p., about 10 mV in amplitude) in the circular muscle of guinea-pig proximal colon, recorded by the modified single sucrose gap technique. 2. The P2 purinoceptor agonist, alpha, beta methylene ATP (alpha, beta mATP, 100 microM) and the pituitary adenylyl cyclase activating peptide (PACAP, 1 microM) both produced hyperpolarization (11 +/- 0.8 mV, n = 14 and 10.2 +/- 0.8 mV, n = 19, respectively) and relaxation (1.1 +/- 0.2 mV, n = 14 and 1.5 +/- 0.2 mN, n = 19, respectively) of the circular muscle. 3. Apamin (0.1 microM) nearly abolished (about 90% inhibition) the NANC i.j.p. and the alpha, beta mATP-induced hyperpolarization, markedly reduced the alpha, beta mATP-induced relaxation (73% inhibition) and the PACAP-induced hyperpolarization (65% inhibition), while the PACAP-induced relaxation was unaffected. 4. Tetraethylammonium (TEA, 10 mM) increased the EFS-evoked i.j.p. and revealed an excitatory junction potential (e.j.p.). In the presence of TEA, alpha, beta mATP induced a biphasic response: transient depolarization and contraction followed by hyperpolarization and relaxation. The hyperpolarization to PACAP was reduced by TEA (45% inhibition) but the relaxation was unaffected. 5. The combined application of apamin (0.1 microM) and TEA (10 mM) abolished the i.j.p. and single pulse EFS evoked a pure e.j.p. with latency three times longer than that of the i.j.p. In the majority of strips tested, alpha, beta mATP and PACAP elicited a biphasic response : depolarization and small contraction followed by hyperpolarization and relaxation. 6. The P2 purinoceptor antagonist, pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) inhibited the NANC i.j.p. in concentration-dependent manner and inhibited the alpha, beta mATP-induced hyperpolarization and relaxation, without affecting the hyperpolarization and relaxation induced by PACAP. On the other hand, the P2 purinoceptor antagonist, suramin (100 microM) inhibited to a similar extent (60-80%) the NANC i.j.p. and the hyperpolarization and relaxation induced by alpha, beta mATP or PACAP. 7. PPADS and suramin reduced the NANC e.j.p. evoked by a single pulse EFS in the presence of apamin and TEA (100 microM of PPADS and 300 microM of suramin inhibited the e.j.p. by about 40%). 8. We conclude that ATP, but not PACAP, mediates the apamin-sensitive NANC i.j.p. in the circular muscle of the guinea-pig colon. After blockade of the NANC i.j.p., ATP may act as an excitatory transmitter by activating excitatory P2 purinoceptors. The subtypes of P2 purinoceptor involved in the inhibitory and excitatory responses remain to be established. The data suggest that excitatory P2 purinoceptors may be located extrajunctionally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.