Abstract

RNAi experiments in insects are characterized by great variability in efficiency; for instance beetles and locusts are very amenable to dsRNA-mediated gene silencing, while other insect groups, most notably lepidopterans, are more refractory to RNAi. Several factors can be forwarded that could affect the efficiency of RNAi, such as the composition and function of the intracellular RNAi machinery, the mechanism of dsRNA uptake, the presence of dsRNA- and siRNA-degrading enzymes and non-specific activation of the innate immune response. In this essay, we investigate the evidence whether persistent infection with RNA viruses could be a major factor that affects the response to exogenous dsRNA in insects. The occurrence of RNA viruses in different insect groups will be discussed, as well as several mechanisms by which viruses could interfere with the process of RNAi. Finally, the impact of RNA virus infection on the design of dsRNA-based insect control strategies will be considered.

Highlights

  • The discovery that dsRNA can trigger silencing of homologous RNA sequences has revolutionized the analysis of gene function in a wide range of eukaryotic organisms such as plants, fungi, and metazoans (Carthew and Sontheimer, 2009; Jinek and Doudna, 2009; Moazed, 2009; Siomi and Siomi, 2009a)

  • We investigate the evidence whether persistent infection with RNA viruses could be a major factor that affects the response to exogenous dsRNA in insects

  • TYPES OF RNA interference (RNAi): INTRACELLULAR, SYSTEMIC, AND ENVIRONMENTAL As a starting point to explain the differential success of RNAi in different insects, one has to consider the method of delivery of dsRNA

Read more

Summary

INTRODUCTION

The discovery that dsRNA can trigger silencing of homologous RNA sequences has revolutionized the analysis of gene function in a wide range of eukaryotic organisms such as plants, fungi, and metazoans (Carthew and Sontheimer, 2009; Jinek and Doudna, 2009; Moazed, 2009; Siomi and Siomi, 2009a). Injection of dsRNA has been applied to elucidate the role of multiple genes implicated in neuronal and/or endocrine signaling pathways by RNAi, identifying their activities in the control of important biological processes, such as lipophilic hormone biosynthesis (Marchal et al, 2011a,b, 2012; Van Wielendaele et al, 2012, 2013c), food uptake (Van Wielendaele et al, 2012, 2013a; Dillen et al, 2013), digestion (van Hoef et al, 2011), reproduction (Badisco et al, 2011; Van Wielendaele et al, 2013b,c), and gregarisation behavior (Ott et al, 2012) Knockdown of this wide variety of transcripts revealed that many locust tissues are affected by the RNAi response, which eventually can result in significant phenotypic effects. Whether induction of RNAi machinery genes by administration of non-specific dsRNA is a conserved response in non-lepidopteran insects is not clear: no effects were observed in the pea aphid, Acyrthosiphon pisum (Hemiptera) (Christiaens, 2013) while Dicer-2 expression was induced in the cockroach, B. germanica (Lozano et al, 2012).

RNA virus
Findings
Evidence for unique responses against viral infection
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.