Abstract

The annual growth rate of aircraft passengers is estimated to be 6.5%, and the CO2 emissions from current large-scale aviation transportation technology will continue to rise dramatically. Both NASA and ACARE have set goals to enhance efficiency and reduce the fuel burn, pollution, and noise levels of commercial aircraft. However, such radical improvements require radical solutions. With the current traditional aircraft designs based on gas turbines or piston engines, these goals are infeasible. Small-scale aircraft have successfully proven emission reductions using energy storage systems, such as Alice aircraft. This paper involves an investigation of the possibility of using superconducting magnetic energy storage (SMES)/battery hybrid energy storage systems (HESSs) instead of generators as backup power sources to improve system efficiency and reduce emissions. Two different power system architectures of electric aircraft (EA) were compared in terms of reliability and stability in a one-generator failure scenario. As weight is crucial in EA designs, the weights of the two systems were compared, including the generators and energy storage systems. The two EA systems were built in Simulink/MATLAB to compare their reliability and stability. With the currently available technologies, based on the energy density of 250 Wh/kg for lithium-ion batteries and a power density of 8.8 kW/kg for generators, the use of the generators as backup sources proved more efficient than the use of HESS. The break-even point was observed at 750 Wh/kg for battery energy density. Any value more than the 750 Wh/kg energy density makes HESS lighter and more efficient than generators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.