Abstract
Effective operational planning of the transportation process should be based on accurate forecasts of revenue trains, wagons, locomotives, freight, etc. This prediction can be realized with the help of modern mathematical method – apparatus of artificial neural networks. Neural networks have such properties as adaptive learning, self-organizing, summarizing, calculating in real time and resistance to disruption. The main applications of neural networks are functions approximation, associative memory, data compression, pattern recognition and classification, optimization problems, the management of complex processes and forecasting. The constituent elements of a formal neuron are х1, х2, …, хn – the network inputs, each of which is characterized by its weight w1, w2, …, wn, respectively. The adder Σ summarizes the input signals, the activation function f describes the neuron transition rule when new signals are received. According to connections architecture the neural networks can be grouped into two classes: feedforward networks, which graphs have no loops, and recurrent networks or networks with feedback. By the neural network training is understood a setting of the network architecture and weights for the effective implementation of the task. The learning methods can be divided into two groups: with the teacher and without a teacher. Neural networks can be used for real-time forecasting of the train arrival at the technical stations on the basis of known departure parameters of the trains: information about the time of departure from the neighboring technical station, the train weight, the data on seasonal and weekly uneven. While designing the neural network to solve a particular problem should be considered several variants differing in, for example, the number of neurons in the layers, the number of hidden layers, etc. The main indicators, by which can be made a comparison of the selected architectures of neural networks can be such parameters as the minimum error, as well as a high correlation coefficient between actual and calculated data. Thus, the artificial neural networks can be widely used in the design of operational traffic control systems since allows to receive an accurate prediction based on many factors and is relatively simple to design
Highlights
Нейронні мережі мають такі властивості як адаптивне навчання, самоорганізація, узагальнення, обчислення в реальному часі та стійкість до перебоїв
– Режим доступа – https://www.google.com/url?q=http://www.academicjou rnals.org/journal/IJPS/article-full-textpdf/6B9CB6328791&sa=U&ei=jqU_VNDKL9fzatrcge gD&ved=0CBoQFjAB&usg=AFQjCNHNlUMDmP5iypzl0Yhac0IPcte0A
Summary
З інженерної точки зору ШНМ – це паралельно розподілена система обробки інформації, утворена тісно зв'язаними простими обчислювальними вузлами (однотипними або різними), що має властивість накопичувати експериментальні знання, узагальнювати їх і робити доступними для користувача у формі, зручній для інтерпретації й прийняття рішень [3]. 1 наведено формальний нейрон – одиницю обробки інформації в нейромережі. Складовими елементами нейрону являються х1, х2, ..., хn – вхідні сигнали мережі, кожний з яких характеризується своєю вагою w1, w2, ..., wn відповідно. Суматор Σ підсумовує вхідні сигнали, зважені відносно відповідних синапсів нейрону. Функція активації f описує правило переходу нейрона, що перебуває в момент часу k у стані z(k), у новий стан z(k+1) при надходженні нових сигналів x [5]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.