Abstract
Background: Renal hypoxia is an aggravating factor for tubulointerstitial damage, which is strongly associated with renal prognosis in diabetic kidney disease (DKD). Therefore, urinary markers that can detect renal hypoxia are useful for monitoring DKD. Objective: To determine the correlation between urinary liver-type fatty acid-binding protein (L-FABP) and renal hypoxia using a novel animal model of type 2 diabetes. Methods: Male spontaneously diabetic Torii (SDT) fatty rats (n = 6) were used as an animal model of type 2 diabetes. Age- and sex-matched Sprague-Dawley (SD) rats (n = 8) were used as controls. Body weight, systolic blood pressure, and blood glucose levels were measured at 8, 12, 16, and 24 weeks of age. Urine samples and serum and kidney tissues were collected at 24 weeks of age. Microvascular blood flow index (BFI) was measured using diffuse correlation spectroscopy before sampling both the serum and kidneys for the evaluation of renal microcirculation at the corticomedullary junction. Results: Obesity, hyperglycemia, and hypertension were observed in the SDT fatty rats. Focal glomerular sclerosis, moderate interstitial inflammation, and fibrosis were significantly more frequent in SDT fatty rats than in SD rats. While the frequency of peritubular endothelial cells and phosphoendothelial nitric oxide synthase levels were similar in both types of rats, the degree of renal hypoxia-inducible factor-1α (HIF-1α) expression was significantly higher (and with no change in renal vascular endothelial growth factor expression levels) in the SDT fatty rats. Urinary L-FABP levels were significantly higher and renal microvascular BFI was significantly lower in the SDT fatty rats than in the SD rats. Urinary L-FABP levels exhibited a significant positive correlation with renal HIF-1α expression and a significant negative correlation with renal microvascular BFI. Conclusions: Urinary L-FABP levels reflect the degree of renal hypoxia in DKD in a type 2 diabetic animal model. Urinary L-FABP may thus prove useful as a renal hypoxia marker for monitoring DKD in patients with type 2 diabetes in clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.