Abstract

Oxidation of fullerenes, carbon nanotubes, and graphene, is one of the first proposed and successful approaches for further functionalization of these nano dimension carbon allotropes. Also, the C20 fullerene, as the smallest known carbon cage, is one of the most important species, in the future of nanotechnology. In this regard, the potential energy surface (PES) study suggests that reaction between nitric (V) acid and C20 fullerene, first leads to the production of a relatively meta-stable kinetically allowed intermediate via a [2+3] cycloaddition. After the intermediate is produced, it would subsequently be decomposed to a C20O open-shell fullerene and a HNO2molecule. Such oxidations were observed via the reaction between strong acids and some of the nano-sized carbon allotropes like carbon nanotube CNTs or spherical fullerenes. The results showed that the produced intermediate directly changes to the final product of oxidation, in a fast process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call