Abstract
In this paper, we study the possibility of obtaining a stable flat dark energy-dominated universe in a good agreement with observations in the framework of Swiss-cheese brane-world cosmology. Two different brane-world cosmologies with black strings have been introduced for any cosmological constant [Formula: see text] using two empirical forms of the scale factor. In both models, we have performed a fine-tuning between the brane tension and the cosmological constant so that the Equation of state (EoS) parameter [Formula: see text] for the current epoch, where the redshift [Formula: see text]. We then used these fine–tuned values to calculate and plot all parameters and energy conditions. The deceleration–acceleration cosmic transition is allowed in both models, and the jerk parameter [Formula: see text] at late-times. Both solutions predict a future dark energy-dominated universe in which [Formula: see text] with no crossing to the phantom divide line. While the pressure in the first solution is always negative, the second solution predicts a better behavior of cosmic pressure where the pressure is negative only in the late-time accelerating era but positive in the early-time decelerating era. Such a positive-to-negative transition in the evolution of pressure helps to explain the cosmic deceleration–acceleration transition. Since black strings have been proved to be unstable by some authors, this instability can actually reflect doubts on the stability of cosmological models with black strings (Swiss-cheese type brane-worlds cosmological models). For this reason, we have carefully investigated the stability through energy conditions and sound speed. Because of the presence of quadratic energy terms in Swiss-cheese type brane-world cosmology, we have tested the new nonlinear energy conditions in addition to the classical energy conditions. We have also found that a negative tension brane is not allowed in both models of the current work as the energy density will no longer be well defined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geometric Methods in Modern Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.