Abstract

Enzymes that hydrolyze the quorum-sensing signal molecules of pathogenic bacteria allow us to influence the number and stability of their populations. The combination of such enzymes with antibiotics can be considered as one of the ways of solving the problem of regulation of the development of antibiotic resistance. In the presence of puromycin and ceftiofur (0.2 g/L) during exposure at 25–41°C, the stabilization of His6-OPH lactonase activity is observed. The molecular docking of antibiotics to the surface of the His6- OPH dimer reveals the antibiotics binding both to the area near the active sites of the enzyme subunits and to the region of contact between the subunits of the dimer, which possibly led to the stabilization of the enzyme. The presence of enzyme preparations facilitates the reduction on 36–48% of the minimum inhibitory concentration (MIC) of puromycin and ceftiofur on the growth of highly concentrated (106 cells/mL) cell populations of Pseudomonas aeruginosa B-6643 and Escherichia coli B-6645.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call