Abstract

The positive muon (μ+) can be incorporated into free radicals where it acts as a probe of the structure and dynamics. The muoniated radicals are characterized by a series of magnetic resonance techniques known as μSR for muon spin rotation, resonance and relaxation spectroscopy. In this review it is shown how μSR can be used to obtain information about the structure, dynamics, and local environments of transient radicals in solids like zeolites, in solution or even in exotic solvents like supercritical water. It will also be demonstrated that muoniated radicals can be used as probes in complex systems, such as rod-like and discotic liquid crystals, bilayers and polymers, where they have advantages over traditional spin labelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.