Abstract

We show that positive $S^1$-equivariant symplectic homology is a contact invariant for a subclass of contact manifolds which are boundaries of Liouville domains. In nice cases, when the set of Conley-Zehnder indices of all good periodic Reeb orbits on the boundary of the Liouville domain is lacunary, the positive $S^1$-equivariant symplectic homology can be computed; it is generated by those orbits. We prove a Viterbo functoriality property: when one Liouville domain is embedded into an other one, there is a morphism (reversing arrows) between their positive $S^1$-equivariant symplectic homologies and morphisms compose nicely. These properties allow us to give a proof of Ustilovsky's result on the number of non isomorphic contact structures on the spheres $S^{4m+1}$. They also give a new proof of a Theorem by Ekeland and Lasry on the minimal number of periodic Reeb orbits on some hypersurfaces in $\mathbb{R}^{2n}$. We extend this result to some hypersurfaces in some negative line bundles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.