Abstract

Alternating sign matrices (ASMs) are square matrices with entries 0, 1, or -1 whose rows and columns sum to 1 and whose nonzero entries alternate in sign. We put ASMs into a larger context by studying the order ideals of subposets of a certain poset, proving that they are in bijection with a variety of interesting combinatorial objects, including ASMs, totally symmetric self―complementary plane partitions (TSSCPPs), Catalan objects, tournaments, semistandard Young tableaux, and totally symmetric plane partitions. We use this perspective to prove an expansion of the tournament generating function as a sum over TSSCPPs which is analogous to a known formula involving ASMs. Les matrices à signe alternant (ASMs) sont des matrices carrées dont les coefficients sont 0,1 ou -1, telles que dans chaque ligne et chaque colonne la somme des entrées vaut 1 et les entrées non nulles ont des signes qui alternent. Nous incluons les ASMs dans un cadre plus vaste, en étudiant les idéaux des sous-posets d'un certain poset, dont nous prouvons qu'ils sont en bijection avec de nombreux objets combinatoires intéressants, tels que les ASMs, les partitions planes totalement symétriques autocomplémentaires (TSSCPPs), des objets comptés par les nombres de Catalan, les tournois, les tableaux semistandards, ou les partitions planes totalement symétriques. Nous utilisons ce point de vue pour démontrer un développement de la série génératrice des tournois en une somme portant sur les TSSCPPs, analogue à une formule déjà connue faisant appara\^ıtre les ASMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.