Abstract

The Portevin-Le Chatelier effect of Cu-2.0Be alloy was investigated using hot isothermal compression at varying strain rates (0.01-10 s-1) and temperature (903-1063 K). An Arrhenius-type constitutive equation was developed, and the average activation was determined. Both strain-rate-sensitive and temperature-sensitive serrations were identified. The stress-strain curve exhibited three types of serrations: type A at high strain rates, type B (mixed A + B) at medium strain rates, and type C at low strain rates. The serration mechanism is mainly affected by the interaction between the velocity of solute atom diffusion and movable dislocations. As the strain rate increases, the dislocations outpace the diffusion speed of the solute atoms, limiting their ability to effectively pin the dislocations, resulting in lower dislocation density and serration amplitude. Moreover, the dynamic phase transformation triggers the formation of nanoscale dispersive β phases, which impede dislocation and cause a rapid increase in the effective stress required for unpinning, leading to the formation of mixed A + B serrations at 1 s-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.