Abstract

PurposeThe ocular surface microbiome has been described as paucibacterial. Until now, studies investigating the bacterial community associated with the ocular surface through high-throughput sequencing have focused on the conjunctiva. Conjunctival samples are thought to reflect and be representative of the microbiome residing on the ocular surface, including the cornea. Here, we hypothesized that the bacterial community associated with the corneal surface was different from those of the inferonasal and superotemporal conjunctival fornices, and from the tear film.MethodsBoth eyes from 15 healthy piglets were sampled using swabs (inferonasal fornix, superotemporal fornix, and corneal surface, n = 30 each) and Schirmer tear test strips (STT, n = 30). Negative sampling controls (swabs and STT, n = 2 each) and extraction controls (n = 4) were included. Total DNA was extracted and high-throughput sequencing targeting the 16S rRNA gene was performed. Bioinformatic analyses included multiple contamination-controlling steps.ResultsCorneal surface samples had a significantly lower number of taxa detected (P<0.01) and were compositionally different from all other sample types (Bray-Curtis dissimilarity, P<0.04). It also harbored higher levels of Proteobacteria (P<0.05), specifically Brevundimonas spp. (4.1-fold) and Paracoccus spp. (3.4-fold) than other sample types. Negative control STT strip samples yielded the highest amount of 16S rRNA gene copies across all sample types (P<0.05).ConclusionsOur data suggests that the corneal surface provides a distinct environmental niche within the ocular surface, leading to a bacterial community compositionally different from all other sample types.

Highlights

  • The conjunctiva, together with the cornea, limbus and tear film form the ocular surface (OS)

  • Negative control Schirmer tear test (STT) strip samples yielded the highest amount of 16S rRNA gene copies across all sample types (P

  • Corneal microbiome is unique within the ocular surface

Read more

Summary

Methods

Both eyes from 15 healthy piglets were sampled using swabs (inferonasal fornix, superotemporal fornix, and corneal surface, n = 30 each) and Schirmer tear test strips (STT, n = 30). Negative sampling controls (swabs and STT, n = 2 each) and extraction controls (n = 4) were included. Total DNA was extracted and high-throughput sequencing targeting the 16S rRNA gene was performed.

Results
Introduction
Materials and methods
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call