Abstract

BackgroundGlutamine synthetase (GS) plays a central role in plant nitrogen assimilation, a process intimately linked to soil water availability. We previously showed that hybrid poplar (Populus tremula X alba, INRA 717-1B4) expressing ectopically a pine cytosolic glutamine synthetase gene (GS1a) display enhanced tolerance to drought. Preliminary transcriptome profiling revealed that during drought, members of the superoxide dismutase (SOD) family were reciprocally regulated in GS poplar when compared with the wild-type control, in all tissues examined. SOD was the only gene family found to exhibit such patterns.Results In silico analysis of the Populus genome identified 12 SOD genes and two genes encoding copper chaperones for SOD (CCSs). The poplar SODs form three phylogenetic clusters in accordance with their distinct metal co-factor requirements and gene structure. Nearly all poplar SODs and CCSs are present in duplicate derived from whole genome duplication, in sharp contrast to their predominantly single-copy Arabidopsis orthologs. Drought stress triggered plant-wide down-regulation of the plastidic copper SODs (CSDs), with concomitant up-regulation of plastidic iron SODs (FSDs) in GS poplar relative to the wild type; this was confirmed at the activity level. We also found evidence for coordinated down-regulation of other copper proteins, including plastidic CCSs and polyphenol oxidases, in GS poplar under drought conditions.ConclusionsBoth gene duplication and expression divergence have contributed to the expansion and transcriptional diversity of the Populus SOD/CCS families. Coordinated down-regulation of major copper proteins in drought-tolerant GS poplars supports the copper cofactor economy model where copper supply is preferentially allocated for plastocyanins to sustain photosynthesis during drought. Our results also extend previous findings on the compensatory regulation between chloroplastic CSDs and FSDs, and suggest that this copper-mediated mechanism represents a common response to oxidative stress and other genetic manipulations, as in GS poplars, that affect photosynthesis.

Highlights

  • Inorganic nitrogen (N) is the most limiting nutrient affecting the growth of forest trees

  • Twelve putative superoxide dismutase (SOD) were identified in the P. trichocarpa genome (Phytozome) by BLAST using Arabidopsis and poplar sequences functionally annotated as SODs in the NCBI database as queries

  • Seven poplar SODs were classified as Cu/ZnSODs in three strongly supported sub-groups (PtCSD1, PtCSD2, and PtCSD3) corresponding to their putative Arabidopsis orthologs

Read more

Summary

Introduction

Inorganic nitrogen (N) is the most limiting nutrient affecting the growth of forest trees. Consistent with the central importance of N metabolism in plant growth and development, hybrid poplar (Populus tremula X alba, INRA 717-1B4) expressing ectopically the pine glutamine synthetase gene (GS1a) exhibited several pleiotropic phenotypes of agronomic significance. These include increased growth [7,8], increased nitrogen use efficiency [9], altered wood chemistry [10], and of particular relevance to the present investigation, enhanced tolerance to drought [11]. We previously showed that hybrid poplar (Populus tremula X alba, INRA 717-1B4) expressing ectopically a pine cytosolic glutamine synthetase gene (GS1a) display enhanced tolerance to drought. SOD was the only gene family found to exhibit such patterns

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.