Abstract

We have for the first time calculated the population characteristics of the Earth’s irregular natural satellites (NESs) that are temporarily captured from the near-Earth-object (NEO) population. The steady-state NES size–frequency and residence-time distributions were determined under the dynamical influence of all the massive bodies in the Solar System (but mainly the Sun, Earth, and Moon) for NEOs of negligible mass. To this end, we compute the NES capture probability from the NEO population as a function of the latter’s heliocentric orbital elements and combine those results with the current best estimates for the NEO size–frequency and orbital distribution. At any given time there should be at least one NES of 1-m diameter orbiting the Earth. The average temporarily-captured orbiter (TCO; an object that makes at least one revolution around the Earth in a co-rotating coordinate system) completes (2.88±0.82) rev around the Earth during a capture event that lasts (286±18) d. We find a small preference for capture events starting in either January or July. Our results are consistent with the single known natural TCO, 2006 RH120, a few-meter diameter object that was captured for about a year starting in June 2006. We estimate that about 0.1% of all meteors impacting the Earth were TCOs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.