Abstract

Recent progress in genomic sequencing from patient samples has allowed for the first detailed insight into the within-host genetic diversity of Mycobacterium tuberculosis (M.TB), revealing remarkably low levels of variation. While this has often been attributed to low mutation rates, other factors have been described, including resistance evolution (i.e., selective sweeps), widespread purifying and background selection, and, more recently, progeny skew. Here we review recent findings pertaining to the processes governing the evolutionary dynamics of M.TB, discuss their implications for improving our understanding of this important human pathogen, and make recommendations for future work. Significantly, this emerging evolutionary framework involving the joint estimation of demographic, selective, and reproductive processes is forming a new paradigm for the study of within-host pathogen evolution that will be widely applicable across organisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.