Abstract

ATP- and NAD(+)-dependent DNA ligases, ATP-dependent RNA ligases and GTP-dependent mRNA capping enzymes comprise a superfamily of proteins that catalyze nucleotidyl transfer to polynucleotide 5' ends via covalent enzyme-(lysyl-N)-NMP intermediates. The superfamily is defined by five peptide motifs that line the nucleotide-binding pocket and contribute amino acid sidechains essential for catalysis. Early crystal structures revealed a shared core tertiary structure for DNA ligases and capping enzymes, which are composed minimally of a nucleotidyltransferase domain fused to a distal OB-fold domain. Recent structures of viral and bacterial DNA ligases, and a fungal mRNA capping enzyme underscore how the substrate-binding and chemical steps of the ligation and capping pathways are coordinated with large rearrangements of the component protein domains and with remodeling of the atomic contacts between the enzyme and the nucleotide at the active site. The first crystal structure of an RNA ligase suggests that contemporary DNA ligases, RNA ligases and RNA capping enzymes evolved by fusion of ancillary effector domains to an ancestral catalytic module involved in RNA repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call