Abstract

Abstract As quantum computing advances rapidly, guaranteeing the security of cryptographic protocols resistant to quantum attacks is paramount. Some leading candidate cryptosystems use the learning with errors (LWE) problem, attractive for its simplicity and hardness guaranteed by reductions from hard computational lattice problems. Its algebraic variants, ring-learning with errors (RLWE) and polynomial learning with errors (PLWE), gain efficiency over standard LWE, but their security remains to be thoroughly investigated. In this work, we consider the “smearing” condition, a condition for attacks on PLWE and RLWE introduced in Elias et al. We expand upon some questions about smearing posed by Elias et al. and show how smearing is related to the coupon collector’s problem. Furthermore, we develop an algorithm for computing probabilities related to smearing. Finally, we present a smearing-based algorithm for solving the PLWE problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.