Abstract

This paper presents a new approach called polynomial discrete Radon transform (PDRT), regarded as a generalization of the classical finite discrete Radon transform. Specifically, the PDRT transforms an image into Radon space by summing the pixels according to polynomial curves. The PDRT can be applied on square \(p \times p\) images where \(p\) is assumed to be a prime number. It is based on a simple arithmetic operations and requires no data interpolation. An interesting property of the PDRT is its exact inversion. This means that an image can be transformed and then perfectly reconstructed. Through this study, we show that the new approach can be applied for some pattern recognition applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.