Abstract

Let G: = G(1,n,q) denote the Grassmannian of lines in PG(n,q), embedded as a point-set in PG(N, q) with $$N:=\binom{n+1}{2}-1.$$ For n = 2 or 3 the characteristic function $$\chi (\overline{G})$$ of the complement of G is contained in the linear code generated by characteristic functions of complements of n-flats in PG(N, q). In this paper we prove this to be true for all cases (n, q) with q = 2 and we conjecture this to be true for all remaining cases (n, q). We show that the exact polynomial degree of $$ \chi (\overline{G})$$ is $$(q-1)(\binom{n}{2}-1+\delta )$$ for ?: = ?(n, q) = 0 or 1, and that the possibility ? = 1 is ruled out if the above conjecture is true. The result deg( $$\chi (\overline{G}))= \binom{n}{2}-1$$ for the binary cases (n,2) can be used to construct quantum codes by intersecting G with subspaces of dimension at least $$\binom{n}{2}.$$

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call