Abstract

Low-temperature β-BiNbO4 powders (denoted as Low-β) were prepared by citrate and Pechini methods using homemade water-soluble niobium precursors. The addition of ethylene glycol and the resultant polymerization effect on the synthesis and visible-light photocatalytic performance of β-BiNbO4 powders were fully investigated. The polymerization effect is beneficial to lower the phase formation temperature and obtain smaller particle catalysts. Both methods can synthesize catalysts with excellent performance of visible-light degradation of methyl violet (MV). The Low-β BiNbO4 powder prepared by citrate method shows better degradation rate of about 1 h to decompose 80 % of MV and also displays good photocatalytic stability. The photodegradation of MV under the visible-light irradiation followed the pseudo-first-order kinetics according to the Langmuir-Hinshelwood model, and the obtained first-order rate constant and half-time are 2.85 × 10−2 min−1 and 24.3 min, respectively. The better photocatalytic performance of BiNbO4 powders prepared by citrate method can be attributed to its smaller band gap and better crystallinity.

Highlights

  • In recent years, environmental pollution, especially organic pollutants, has attracted much attention due to its deleterious effect on human health [1]

  • Low-β BiNbO4 powders were prepared by citrate and Pechini methods using homemade watersoluble niobium precursors

  • The particle size is between 70 and 100 nm for the Pechini method, smaller than that of the citrate method, about 150 nm, while the shape of Low-β BiNbO4 powders seems irregular for both methods due to the uncompleted crystal evolution

Read more

Summary

Introduction

Environmental pollution, especially organic pollutants, has attracted much attention due to its deleterious effect on human health [1]. In order to make good use of solar light source, many visible-light active photocatalysts have been deeply investigated, such as quantum dot-based photocatalysts [2–5]. Among these photocatalysts, much attention has been paid on bismuth-based photocatalytic materials, such as BiOBr [6, 7], Bi2O2CO3 [8], BiVO4 [9], BiNbO4 [10–12], and BiTaO4 [13, 14], due to their excellent. BiNbO4 has orthorhombic α and triclinic β phases. The visible-light photocatalytic performance test shows that the Low-β exhibits the best photocatalytic efficiency compared with α phase and High-β [12]. The formation of a pure triclinic phase of BiNbO4 at a low temperature of 700 °C can be attributed to the advantage of the citrate method

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.