Abstract

The absorption and desorption of chlorobenzene, o-dichlorobenzene, and chloroform in poly[n-butyl methacrylate] (PBMA) was studied in polymer-coated 104 MHz surface acoustic wave (SAW) sensors, and in free-standing polymer films by thermogravimetric analysis (TGA). The sorption processes were analyzed by a Fickian simulation and best-fit partition, and diffusion coefficients were derived. Good correlations were found between simulated and observed data. Partition coefficients derived from SAW response were independent of coating thickness and were found to be about two to three times bigger than those derived from the gravimetric response. In contrast, the diffusion coefficients increased linearly with coating thickness in the range 70−560 kHz. For the thickest polymer coating, SAW-derived diffusion coefficients were comparable with TGA-related diffusion coefficients. This study reconfirms the finding for other polymers that the response of SAW chemosensors is higher than that anticipated from a mass chan...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.