Abstract
Pathogenic Yersinia strains evade the innate immune responses of the host by producing effector proteins ( Yersinia outer proteins [Yops]), which are directly injected into mammalian cells by a type III secretion system (TTSS). One of these effector proteins (YopT) disrupts the actin cytoskeleton of the host cell resulting in cell rounding. YopT is a cysteine protease that cleaves Rho proteins directly upstream of the post-translationally modified cysteine. Thereby, it releases the GTPases from the membrane leading to inactivation. Small GTPases are modified by isoprenylation of the cysteine of the CAAX box, cleavage of the -AAX tripeptide, and methylation of the cysteine. We have shown that isoprenylation and the endoproteolytic cleavage of the tripeptide of Rho GTPases are essential for YopT-induced cleavage, whereas carboxyl methylation is not required. In the present study, we post-translationally modified RhoA, Rac, Cdc42, and several mutants in vitro and characterized the YopT-induced cleavage with recombinant YopT. We show that farnesylated RhoA is a preferred substrate of YopT compared with the geranylgeranylated GTPase. Geranylgeranylated RhoA, however, is the preferred substrate for YopT-catalyzed cleavage with a threefold faster turnover rate over Rac and Cdc42. Moreover, our data indicate that the composition of the polybasic region of the GTPases defines the specificity and efficiency of the YopT-induced cleavage, and that a space between the polybasic stretch of amino acids at the C terminus and the CAAX box enhances the turnover rate of YopT-catalyzed cleavage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.