Abstract

This paper introduces a novel semi-analytical representation of a displacement-based finite element model reduced via nested polynomials obtained through fitting of modal data. This method, termed Poly-SAFE (Polynomial Semi-Analytical Finite Element), is particularly suitable for modelling thin-walled composite structures subject to recursive analyses under varying loads, a common scenario in fluid–structure interaction (FSI) and Progressive Failure Assessment (PFA). The resulting functionals, i.e. polynomials inside polynomials, can be evaluated in an analytical fashion to yield displacements at arbitrary positions not limited to typical finite element grid nodes. These functionals remain virtually load-independent, allowing a Poly-SAFE model to be constructed without previous knowledge of magnitude, direction and location of applied loads, either static or dynamic. In this paper the theoretical framework of the Poly-SAFE method is presented in some detail, followed by an application of the theory to an extruded airfoil-shaped, laminated thin-walled beam subject to static loads. The displacement field captured by the new method is compared to the predictions of its associated finite element model, showing an excellent overall agreement. Finally, the advantages of Poly-SAFE against FE models in specific analyses and contexts are emphasised.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.