Abstract
Anthropogenic air pollution is ubiquitous in urban areas worldwide. Microorganisms such as bacteria and fungi in addition to other biological matter like endotoxins and spores comingle with particulate matter (PM) air pollutants but have rarely been considered in air pollution research. Microorganisms may be influenced by interactions with ambient particles in matrices such as soil and dust leading to the inhibition or enhancement of viability and environmental stability (e.g. tolerance to variation in seasonality, temperature, humidity, etc.). Similar effects of airborne particles on microbes are plausible; however, to our knowledge the influence of PM on airborne microbes has remained largely unexamined. In the case of microbial agents of communicable disease, such as viruses, the potential for interactions with pollution may have public health implications. Here we describe an experimental platform to study aerosol-aerosol interactions between PM2.5 particulate from urban air and artificially generated viral bioaerosol. Preliminary studies using this platform have revealed interactions between PM2.5 and the enveloped bacteriophage Φ6 that reduce infectivity of the bacteriophage by 44% compared to a control exposed only to HEPA-filtered air. Co-aerosolization and aging of concentrated PM2.5 with Φ6 in combination with ΦX174 (a non-enveloped bacteriophage) showed a similar trend in reduction of Φ6 infectivity but revealed an antithetical enhancement of ΦX174 infectivity compared to control exposures in HEPA-filtered air. Ongoing investigations are needed to understand the nature of interactions between bioaerosols and PM2.5 particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.