Abstract

RF electron guns are capable of producing electron bunches with high brightness, which outperform DC electron guns and may even be able to provide electron beams for the ILC without the need for a damping ring. However, all successful existing guns for polarized electrons are DC guns because the environment inside an RF gun is hostile to the GaAs cathode material necessary for polarization. While the typical vacuum pressure in a DC gun is better than 10{sup -11} torr the vacuum in an RF gun is in the order of 10{sup -9} torr. Experiments at BINP Novosibirsk show that this leads to strong ion back-bombardment and generation of dark currents, which destroy the GaAs cathode in a short time. The situation might be much more favorable in a (super-conducting) SRF gun. The cryogenic pumping of the gun cavity walls may make it possible to maintain a vacuum close to 10{sup -12} torr, solving the problem of ion bombardment and dark currents. Of concern would be contamination of the gun cavity by evaporating cathode material. This report describes an experiment that Brookhaven National Laboratory (BNL) in collaboration with Advanced Energy Systems (AES) is conducting to answer these questions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call