Abstract

It is pointed out that, because of the large Faraday rotation an outlet of linear polarization from the photosphere of a white dwarf is hampered. In accordance with this fact it is proposed to distinguish two types of magnetic white dwarfs. The first type (its representative is Grw 70°8247) has a linear polarization which is comparable in magnitude with the circular one. Polarization of radiation from the white dwarfs of the first type cannot arise in the photosphere. It arises in the corona of the star either as a result of cyclotron emission of hot electrons (T∼106 K) or as a result of scattering of slightly polarized emission from the photosphere in the corona. For the first type dwarfs such magnetic fields are required thatωBωopt, i.e.B(1−3)×108G. The white dwarfs of the second type (its representative is G 99-37) have their linear polarization much smaller than the circular one. Polarization of these white dwarfs can arise as a result of the transfer of radiation in the nonisothermal photosphere. Magnetic fields required for the second type can be much smaller:B cos γ=(1−10)×106 G. It is shown that the photospheric model allows to obtain the quantitative accordance of the theory with all the observational data for G 99-37 and is not in accordance with the data for Grw 70°8247, at the same time the model with cyclotron emission from the corona explains the magnitude of both linear and circular polarization and their wavelength dependence for Grw 70°8247.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.