Abstract
We show that in F-theory GUTs, a natural explanation of flavor hierarchies in the quark and lepton sector requires a single point of E_8 enhancement in the internal geometry, from which all Yukawa couplings originate. The monodromy group acting on the seven-brane configuration plays a key role in this analysis. Moreover, the E_8 structure automatically leads to the existence of the additional fields and interactions needed for minimal gauge mediated supersymmetry breaking,__and almost nothing else__. Surprisingly, we find that in all but one Dirac neutrino scenario the messenger fields in the gauge mediated supersymmetry breaking sector transform as vector-like pairs in the 10 + 10* of SU(5). We also classify dark matter candidates available from this enhancement point, and rule out both annihilating and decaying dark matter scenarios as explanations for the recent experiments PAMELA, ATIC and FERMI. In F-theory GUT models, a 10-100 MeV mass gravitino remains as the prime candidate for dark matter, thus suggesting an astrophysical origin for recent experimental signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.