Abstract

The discrete group generated by reflections of the sphere, or the Euclidean space, or hyperbolic space are said to be Coxeter groups of, respectively, spherical, or Euclidean, or hyperbolic type. The hyperbolic Coxeter groups are said to be (quasi-)Lannér if the tiles covering the space are of finite volume and all (resp. some of them) are compact. For any Coxeter group stratified by the length of its elements, the Poincaré series is the generating function of the cardinalities of sets of elements of equal length. Around 1966, Solomon established that, for ANY Coxeter group, its Poincaré series is a rational function with zeros somewhere on the unit circle centered at the origin, and gave an implicit (recurrence) formula. For the spherical and Euclidean Coxeter groups, the explicit expression of the Poincaré series is well-known. The explicit answer was known for any 3-generated Coxeter group, and (with mistakes) for the Lannér groups. Here we give a lucid description of the numerator of the Poincaré series of any Coxeter group, the explicit expression of the Poincaré series for each Lannér and quasi-Lannér group, and review the scene. We give an interpretation of some coefficients of the denominator of the growth function. The non-real poles behave as in Eneström's theorem (lie in a narrow annulus) though the coefficients of the denominators do not satisfy theorem's requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.