Abstract

In this paper the Power-Oriented Graphs (POG) technique is used for modelling an internal combustion engine. The POG technique is focused on a new modular, physically based and lumped parameter approach, leading to a complete and coherent engine model structure. The aim of the authors, starting from an analogy with electrical systems, is to simplify the approach eliminating the space dynamics (multi-zone combustion and wave effects), while preserving the time dynamics. In this way, it is possible to obtain an engine description similar to an electrical circuit, with all the useful consequences in term of existence and numerical availability of the solution. The advantages are in the specific correspondence that is found between the engine components and variables (as throttle valve, cylinder, inertial flows) with electrical counterparts (current, voltage, resistance). The main benefit achievable with this methodology is the simplicity to compose the whole engine model and customize it including the differential equations of the engine in state space form, using the POG technique. The POG technique is a graphical modelling technique which uses only two basic blocks (the ldquoelaborationrdquo and ldquoconnectionrdquo blocks) for modelling physical systems. The state space mathematical model of a system can be ldquodirectlyrdquo obtained from the corresponding POG representation. The POG model of the considered combustion engine shows its internal structure from a ldquopowerrdquo point of view.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call