Abstract

The South Middle Atlas front constitutes a northeast-trending shear zone, located north of the Neogene Missour basin and east of the Taza Guercif basin. This paper analyses the Southern Middle Atlas Fault Zone (SMAFZ) deformation since the Pliocene. The set of structures observed suggests that reverse and thrust faulting along the central part of the SMAFZ are combined with left-lateral slip along N–S striking faults of its south-western termination and right-lateral faulting along E–NE striking faults of the east–northeast termination. Thrusts and oblique thrust-related anticlines of the two lateral ramps partly accommodate north-west directed motion of the African plate. The Thrusts probably resulted from rejuvenation of Jurassic normal faults; they were active during the Upper Miocene–Pliocene and the Pleistocene. The geometries of positive inversion structures and buttressing effects are clearly dependent on the geometry and sedimentology of the original basin-controlling fault system and on the presence of a decollement level. Field mapping is integrated with Landsat imagery and a digital elevation model to investigate the morphotectonic evolution of the south-eastern range front of the Middle Atlas. Geomorphological features provide significant information on the processes that govern lateral propagation of active anticlines. Both suggest that the deformation front may have been active since Pliocene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.