Abstract

BackgroundThe superimposed pressure is the primary determinant of the pleural pressure gradient. Obesity is associated with elevated end-expiratory esophageal pressure, regardless of lung disease severity, and the superimposed pressure might not be the only determinant of the pleural pressure gradient. The study aims to measure partitioned respiratory mechanics and superimposed pressure in a cohort of patients admitted to the ICU with and without class III obesity (BMI ≥ 40 kg/m2), and to quantify the amount of thoracic adipose tissue and muscle through advanced imaging techniques.MethodsThis is a single-center observational study including ICU-admitted patients with acute respiratory failure who underwent a chest computed tomography scan within three days before/after esophageal manometry. The superimposed pressure was calculated from lung density and height of the largest axial lung slice. Automated deep-learning pipelines segmented lung parenchyma and quantified thoracic adipose tissue and skeletal muscle.ResultsN = 18 participants (50% female, age 60 [30–66] years), with 9 having BMI < 30 and 9 ≥ 40 kg/m2. Groups showed no significant differences in age, sex, clinical severity scores, or mortality. Patients with BMI ≥ 40 exhibited higher esophageal pressure (15.8 ± 2.6 vs. 8.3 ± 4.9 cmH2O, p = 0.001), higher pleural pressure gradient (11.1 ± 4.5 vs. 6.3 ± 4.9 cmH2O, p = 0.04), while superimposed pressure did not differ (6.8 ± 1.1 vs. 6.5 ± 1.5 cmH2O, p = 0.59). Subcutaneous and intrathoracic adipose tissue were significantly higher in subjects with BMI ≥ 40 and correlated positively with esophageal pressure and pleural pressure gradient (p < 0.05). Muscle areas did not differ between groups.ConclusionsIn patients with class III obesity, the superimposed pressure does not approximate the pleural pressure gradient, which is higher than in patients with lower BMI. The quantity and distribution of subcutaneous and intrathoracic adiposity also contribute to increased pleural pressure gradients in individuals with BMI ≥ 40. This study introduces a novel physiological concept that provides a solid rationale for tailoring mechanical ventilation in patients with high BMI, where specific guidelines recommendations are lacking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.